Climate, Nutrients, and Hypoxia: Predicting Water Quality Trends in the Next 100 Years

Dubravko Justic

Coastal Ecology Institute, and,
Department of Oceanography and Coastal Sciences
School of the Coast and Environment
Louisiana State University, Baton Rouge, LA 70803, USA
djusti1@lsu.edu

Sensitivity of the northern Gulf of Mexico to global climate change

- Dominated by discharges of one of the world largest rivers

 the Mississippi River (drains 41% of the area of the contiguous 48 states);
- Coastal Louisiana's land loss rates are the highest in the U.S. (60 80% of the nation's total wetland loss);
- Supports one of the most valuable U.S. fisheries, exceeded only by the combined Pacific Coast and Alaska regions;
- Affected by tropical storms and hurricanes;
- Continental shelf of the northern Gulf of Mexico is the site of the largest and most severe coastal hypoxic ("dead") zone in the western Atlantic Ocean (> 22,000 km²).

- How can GCC affect the northern Gulf of Mexico, and the hypoxic zone in particular?
- What can we do about it?

SYR - FIGURE 2-3

SYR - FIGURE 9-1b

Global water cycle

 $(10^3 \text{ km}^3 \text{ yr}^{-1})$

Projected 2xCO₂ runoff

(adapted from Miller & Russell.

1992)

How Hypoxia develops

Hypoxia = Dissolved $O_2 < 2 \text{ mg/L (=2 ppm)}$

If you cannot breathe, nothing else matters.

(American Lung Association)

Occurrence of mid-summer hypoxia 1985-2001 (Source: N. Rabalais, LUMCON)

Estimated Size of Bottom-Water Hypoxia in Mid-Summer

Trends in the Mississippi River Runoff, Nitrate Concentration, and Nitrate Flux 1954-2000

Period	Q (m³ s-1)	N-NO ₃ (mg I ⁻¹)	N-NO ₃ flux (kg d ⁻¹)
1983-00	x=15,874	x=1.37	x=2,01x10 ⁶
	SD=7,908	SD=0.55	SD=1.36x10 ⁶
	n=209	n=208	n=208
	(p<0.01)	(p<0.001)	(p<0.001)
1968-82	x=13,849	x=1.05	x=1,34x10 ⁶
	SD=7,104	SD=0.49	SD=0.99x10 ⁶
	n=180	n=153	n=153
	(p<0.001)	(p<0.001)	(p<0.001)
1954-67	x=11,381	x=0.61	x=0.63x10 ⁶
	SD=6,359	SD=0.28	SD=0.49x10 ⁶
	n=161	n=160	n=160
	(p<0.001)	(p<0.001)	(p<0.001)

Coupling between river flow and hypoxia

What will happen in the next 100 years?

Prediction is very difficult, especially about the future (Niels Bohr)

Nominal model

Model Scenarios

- 30% reduction in MR runoff (Wolock and McCabe, 1999)
- MR nitrate concentration unchanged with respect to 1954 –1967
- 20% increase in MR runoff (Miller and Russell, 1992)
- 4 °C increase in NGM temperature (IPCC, 2001)
- ■20% increase in MR runoff + 4 °C increase in NGM temperature (likely GCC scenario; IPCC, 2001)
- ■30% reduction in MR nitrate flux (proposed management action; Rabalais et al., 2002)

MR nitrate 1954-1967

+20% MR runoff

+20% MR runoff +4°C

-30% MR nitrate flux

Model Results

Scenario	YWMH	YWSH	%
	(< 2 mg/l)	(< 1 mg/l)	Change
1. Nominal model	19	16	<u> </u>
230% MR runoff	8	4	-58
3. MR nitrate 1954-1967	0	0	∞
4. +20% MR runoff	26	20	+37
5. +4 °C	25	19	+32
6. +20% MR runoff +4 °C	31	26	+63
730% MR nitrate flux	12	7	-37

What about hurricanes?

Hurricane Dolly 8/19/96 - 8/25/96

(Adapted from: http://www.amerwxccnpt.com/tropical/Dolly/dolly_9608222130_4km.jpg)

Hurricane Danny 7/16/97 - 7/26/97

Source: D. Justic, Coastal Ecology Institute, Louisiana State University

Comparison of Continuous Record on station C6B (19.2 m) and Wind at Grand Isle from 6/23/97 - 7/28/97

O Hydrolab **Measurements** Δ ctd

Source: D. Justic, Coastal Ecology Institute Louisiana State Universit

6/22/976/26/976/30/977/4/97 7/8/97 7/12/977/16/977/20/977/24/977/28/97

Comparison of Continuous Record on station C6B (19.2 m) and Wind at Grand Isle from 8/15/96 - 9/20/96

Source: D. Justic, Coastal Ecology Institute, Louisiana State University

Conclusions

- The ecosystem of the northern Gulf of Mexico appears to be highly sensitive to GCC.
- Model simulations suggest that an increase of 20% in the annual Mississippi River discharge, accompanied by a 4 °C increase in ambient water temperatures, which are likely under a 2XCO₂ scenario, may cause a 60% increase in the frequency of hypoxia.
- GCC could have major impacts on the abundance and diversity of benthic and epibenthic species, including those that are commercially important.

What can we do?

- Reduce MR nutrient load.
- Better management of fisheries resources to lessen negative impacts resulting from GCC.

Coastal Ecology Institute www.lsu.edu/cei

Department of Oceanography and Coastal Sciences

www.ocean.lsu.edu

School of the Coast and Environment www.sc&e.lsu.edu